Guide for Creating Your Own
Reporting Measures

Measure Intent

* Provide a clean simple example for reporting tabular
data and charts for model inputs and simulation
results.

 Minimize coding that has to be done by measure
authors.

— Copy and alter example section and table methods in the
measure to meet your own use case.

* Provide robust performance with consistent look
with measures by other authors.

How the Measure Works

The measure uses bootstrap to produce a clean tables as well
as the table of contents.

dimplejs which uses d3 is used to generate basic charts.

report.html.erb is javascript code called by measure.rb to
generate the html report.

You don’t have to worry about anything above. All you need
to do is change os_lib_reporting_custom.rb as described on
the following slides.

http://getbootstrap.com/2.3.2/getting-started.html
http://dimplejs.org/
http://d3js.org/

Making Your Own Reporting Measure

Download this measure through the the OpenStudio application or PAT.

Then use the “x2” button while this measure is selected to make a copy of the
measure in your “My Measures” directory.
— You want to use the GUI to copy so your measure gets its own unique ID.

While copying your measure take time to give it an updated name,
description, and modeler description.

The only file you need to change is os_lib_reporting.rb in the measure’s
resources directory.

See the OpenStudio Measure Writing Guide for directions on running tests.

— While you can test in the GUI, testing :
A . measure.json
outside of the GUI allows you to quickly y——
test without having to re-run the simulation. measure.xml

— The existing ExampleReport_Test.rb will resources
ifi H rb lib_hel thods.rb
work on your modified measure without 2 08_Ib_Neiper_metnoas.r

. b os_lib_reporting_custom.rb
any changes. The exception would be R R

if you you need to change out the Example om—
Model if it doesn’t have the objects you “s ExampleModel.osm
need for your report. i ExampleReport_Test.rb

output
USA_CO_Golden-NREL.724666_TMY3.epw

http://nrel.github.io/OpenStudio-user-documentation/reference/measure_writing_guide/#running-the-measure-tests

What’s in os_lib_reporting.rb

Everywhere you see a line start with “def some_name” that is defining a
new method.

The first method is “def setup” you don’t need to change this. This is used
by measure.rb to get the model, the idf file, and the SQL results.

There are two other kinds of methods in the file. They have a name that
either end with “section” or “table”.

If the method name ends with “section” it defines a section for the report.

— A “section” method may also define a table, or the tables can be in the own “table”
method and then referred to by the “section” method.

— The naming of the “section” method is important. Having “section” in the name is what
tells measure.rb that this section exists. It will have a “bool” (checkbox) argument
allowing someone using your measure to turn sections on or off.

— The order of the section methods determines the order of the sections in the report.
If the method name ends with “table” then it defines a table. This method
should be referred to by a “section” measure.

Section Method

The section measure should always have the same arguments

— (model, sqlFile, runner, name_only = false)

The first part of the method defines the :title and an empty array of
:tables that will be populated later

Next there is code that stops if name_only = true

— This is used to get the display name for the user arguments.

Then one or more tables are added.

— The code for the table can be in the section or can be in a table method

“return” at the end of the method passes the data for the section back to
measure.rb which in turns passes it to report.html.erb which makes the
erb file.

Table Method

A table section is required to have a :title, :header, and :data.
:units are optional as is :chart
You can have as many rows and columns as you want in your table.

— Make sure the heater, units, and data all have the same number of columns.

Data for a table and chart can come from the model, the idf, file, the
simulation results, an external data source (such as a csv file) or as in the
example can be hard coded in the method.

If you make a chart, keep in mind that different charts take different kinds
of data. This measure uses “simple_pie” and “scatter”.
— See the standard OpenStudio Results measure for examples of more chart types.

1ee
1e1
102
103
104
1e5
106
107
108
109
118
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Code and Results side by side

def self,template_section(model, sqlFile, runner, name_only = false)
array to hold tables
template_tables = []

gather data for section

@template_section = {}
@template_section[:title] = ‘Tasty Treats'
@template_section[:tables] = template_tables

stop here if only name is requested this is used to populate display name for
arguments
if name_only == true
return @template_section
end

create table

template_table_01 = {}
template_table_@1[:title] = 'Fruit’
template_table_01[:header] ['Type', 'Quantity']
template_table_81[:units] = [**, 'lbs']
template_table_@1[:data] = []

add rows to table

template_table_@1[:data] << ['Banana‘, 100]
template_table_@1[:datal << ['Apple', 250]
template_table_81[:data] << ['Orange', 175]

create chart

template_table_01[:chart_type] = 'simple_pie’

template_table_@1[:chart] = []

template_table_@1[:datal.each do |row|
template_table_@1[:chart] << JSON.generate(label: row(@), value: row[l

end

add table to array of tables
template_tables << template_table_81

use helper method that generates additional table for section
template_tables << 0sLib_Reporting.template_table(model, sqlFile, runner)

return @template_section
end

create template section
def self.template_table(model, sqlFile, runner)
create a second table
template_table = {}
template_table[:title] = 'Ice Cream'
template_tablel:header] = ['Type', 'Base Flavor', 'Toppings', 'Value']
template_table[:units] = [**, **, *', 'scoop']
template_table(:data]l = []

add rows to table

template_table[:data] << ['Vanilla', 'Vanilla‘', 'NA‘, 1.5]
template_table:data]l << ['Rocky Road', 'Chocolate', 'Nuts', 1.5]
template_tablel:data] << ['Mint Chip’, 'Mint', 'Chocolate Chips', 1.5]

return template_table
end

section for sample material properties

def self.mat_prop_section(model, sqlFile, runner, name_only = false)
array to hold tables
tables = []

gather data for section

emat_prop = {}

@mat_prop[:title] = 'Material Properties'
@mat_prop[:tables] = tables

Apps W Bookmarks [boetlint () Pivotal Tracker) NREL/OpenStudio Wl NREL: Oy 1o ore:mc $i3 Building Componen: [# Evernote Web

Example Report
Tasty Treats

Fruit - view table

Type Quantity (Ibs)
Banana 100
Apple 250
Orange 176

[E0 Apple [Orange

|1 Banana
Type Base Flavor Toppings Value (scoop)
Vanilla Vanilla NA 1.5
Rocky Road Chocolate Nuts 16
Mint Chip Mint Chocolate Chips 1.6

Material Properties

Metals - view table

2004

(& filex///Users/dgoldwas/Documents/GitHub/OpenStudio-measures/NREL%20working %20measures/example_report/tests/output/test_good_argument_v...

Getting Real Data

The general_building_information_table method at the end of
os_lib_reporting_custom.rb demostrates a number of ways to get real dataGet
the name of the building from the model.

— model.getBuilding.name.to_s

There are some methods to get data right out of the SQL file like total site
energy
— sqlFile.netSiteEnergy.get

Here is an example where a query had to be made into the tabular SQL data

— query = 'SELECT Value FROM tabulardatawithstrings WHERE '
query << "ReportName='AnnualBuildingUtilityPerformanceSummary' and "
query << "ReportForString="Entire Facility' and "
query << "TableName='Building Area' and "
query << "RowName="Total Building Area' and "
query << "ColumnName="'Area' and "
query << "Units='m2";"
query_results = sqlFile.execAndReturnFirstDouble(query)

Any data you get out of the model, IDF file, or SQL database will be in Sl units.
Here is an example of converting it to IP.
— OpenStudio.convert(sqglFile.netSiteEnergy.get, ‘GJ’/kBtu’).get

Limitations and Known Issues

The example measure is setup to be a reporting measure that runs after the
simulation is done. If you are only interested in model inputs you could adapt a
copy of this measure to run as a model measure. You could then use it in apply
measures now in the OpenStudio application.

The .erb file is currently only setup for a few types of dimple charts, and only a few
of those are exercised. Look at the OpenStudio Results measure on the BCL for
example of other chart types

— simple_pie

— vertical_stacked_bar

— vertical_grouped_bar

— scatter

— vertical_grouped_bar_with_comp_line
— multi_step_line_grid

https://bcl.nrel.gov/node/82918

